NASA TM 56047

A STUDY OF THE EFFECT OF RADICAL LOAD DISTRIBUTIONS

ON CALIBRATED STRAIN GAGE LOAD EQUATIONS

Jerald M. Jenkins and Albert E. Kuhl

July 1977

NASA high-number Technical Memorandums are issued to
provide rapid transmittal of technical information from the
researcher to the user. As such, they are not subject to
the usual NASA review process.

NASA Dryden Flight Research Center
Edwards, California 93523



oo e . . A S o e e —

Report No * Governinent Accession No. 3 Recipient” Lataog 'vo _7‘
NASA TM 56047 ! j
4 Titie and Subtitle - 5 Repor: Dot }
July 1977 i
A STUDY OF THE EFFECT OF RADICAL LOAD DISTRIBUTIONS = —
ON CALIBRATED STRAIN GAGE LOAD EQUATIONS : 6 Pertormine Orgenization Code
7. Author(s} 8. Performing (rganization Report No. ]
Jerald M. Jenkins and Albert E. Kuhl H-984
10. Work Unit No.
9. Performing Organization Name and Address 505-02-23
Dryden Flight Research Center 11 Cnnre “rant No.

P. O. Box 273
Edwards, California 93523

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes -

16. Abstract

For several decades, calibrated strain gages have been used to
measure loads on airplanes. The accuracy of the equations used to
relate the strain gage measurements to the applied loads has been based
primarily on the results of the load calibration. This paper presents an
approach for studying the effect of widely varying load distributions on
strain gage load equations. The computational procedure presented
provides a link between the load calibration and the load to be measured

in flight.

A matrix approach to equation selection is presented. This matrix
approach, which is based on equation standard error, load distribution,
and influence coefficient plots of the strain gage equations, is applied

to a complex, delta-wing structure.

17. Key Words (Suggested by Author(s))

Strain gages
Loads
Load equations

18. Distribution Statement

Unclassified - Unlimited

Category: 39

19. Security Classif. (of this report)

20. Security Classif. (of this page)

Unclassified Unclassified

21. No. of Pages 22. Price®

34

*For sale by the National Technical Information Service, Springfield, Virginia 22161



A STUDY OF THE EFFECT OF RADICAL LOAD DISTRIBUTIONS

ON CALIBRATED STRAIN GAGE LOAD EQUATIONS

Jerald M. Jenkins and Albert E. Kuhl
Dryden Flight Research Center

INTRODUCTION

For several decades, airplane flight loads have been measured using calibrated
strain gages. The basic approach, which was formally documented in 1954 (ref. 1),
consists of two distinct processes. First the information from a point load calibra-
tion of the lifting surface is used to obtain a linear expression that relates the
applied loads to the strain gage outputs. The second process is the acquisition of
flight data, which involves deducing flight loads from flight-measured strains. The
empirical relationships established during the ground load calibration are used in
the deductive process.

The procedure to evaluate the validity of a load equation has been a restricted
one. It consists of obtaining a set of calculated loads from the equation based on the
strain information obtained from each of the applied calibration loads. In other
words, the accuracy of the equation is assessed only on the basis of information
developed during the load calibration. In general, the distributions and magnitudes
of the flight loads to be measured are not considered. Therefore, the range of
applicability of the equation is not established.

These conventional procedures have, in great part, served the needs of flight
test and research programs. However, with the evolution of supersonic and hyper-
sonic airplanes, the measurement of flight loads has become more complex. In
particular, many problems have resulted from low aspect ratio fins (ref. 2) and
delta-wing airplanes (refs. 3 to 5). Little additional work has been done to assess
the applicability of conventional processes to recently developed aircraft. In many
recent studies, the point load calibration has been replaced by distributed and
semidistributed load calibrations. The introduction of such approaches provides
reason to question the validity of the conventional processes for evaluating the
accuracy and applicability of a load equation.

This report uses a computational procedure to examine the validity and applica-
bility of various load equations for various load distributions. The computational
procedure used is designed to link the ground load calibration to the measurement
to be made in flight.



SYMBOLS

B bending moment
. influence coefficient for the jth strain gage due to a load applied at
I the ith load point, p, /L, , 1/N (1/Ib)
jooi

i discrete load point
j discrete strain gage
LC calibration load applied at the ith load point, N (Ib)

i
L I local load applied at the ith load point, N (Ib)

i
LT total load applied to the wing, N (Ib)
S shear load
T torsion load
o} voltage change resulting from straining the active arms of a strain

gage bridge

o) reference voltage change resulting from shunting a calibrated
resistor across one arm of a strain gage bridge

) nondimensional strain gage response, &/ Scal
) nondimensional strain gage response for the jth strain gage due to
C. - . .
j the applied calibration load
R summation of total nondimensional strain gage responses for the jth
j strain gage due to the total superposition of all local loads
My total nondimensional strain gage response for the jth strain gage due
ji to the local loading at the ith load point
Subscripts:
m total number of strain gages on wing
n total number of calibration load points on wing



DELTA-WING TEST STRUCTURE

The structural skeleton of a complex delta-wing aircraft is shown in figure 1.
The wing, which is of a multispar construction with an outboard engine nacelle, was
thoroughly instrumented with strain gages and a load calibration was performed
(refs. 3 to 5). The locations of the strain gages are shown in figure 2. Even-
numbered strain gages are configured to sense shearing strains and odd-numbered
gages are configured to sense bending strains. The completeness of the strain gage
instrumentation and the load calibration of the structure provide the basis for the
analytical study contained in this paper.

LOAD EQUATIONS

Load equations that relate applied wing loads to wing root strain gages are

- presented in table 1. These equations were derived by the method described in
reference 4 and the equation numbers are consistent with those given in that refer-
ence. Additional discussion of the equations is presented in reference 6. The
letter S, B, or T in an equation number indicates whether the equation was devel-
oped for shear, bending moment, or torsion, respectively. The three digit sub-
script, such as 302, identifies the strain gage associated with the output, p. All
the shear and torsion equations use five strain gage outputs; the bending moment
equations require the outputs of only two or three strain gages.

The procedure for the error analysis of these equations is discussed in refer-
ences 1 and 4. The standard error of each equation is given in table 2.

COMPUTATIONAL PROCEDURES

The conventional processes used to acquire flight loads data are listed in
table 3. The laboratory process includes the activities that result from applying
loads to a lifting surface, measuring the strain gage responses, and deriving a
mathematical relationship between the loads and the responses. The flight testing
includes the acquisition of the flight test data and the use of the laboratory data to
interpret the information. In the past, this process has been a closed-loop situation.
Accuracy statements have been based on the laboratory calculations and estimates
of the flight data recording system capabilities.

A more complete knowledge of the applicability of an equation developed from
laboratory and flight test processes can be acquired by computational means. Two
types of computational processes are outlined in table 3. The first computational
procedure is reported in reference 6. This computation uses a finite element
structural model to determine where strain gages should be located and how they
should be combined into equations before the load calibration is done. The second
computation evaluates the ability of a particular equation to calculate widely varying



distributions of load. The study of this computation and its results is the basis for
this paper.

The distribution of aerodynamic loads on a lifting surface, such as an airplane
wing, varies in both the chord and span directions, depending on flow conditions
and the attitude of the lifting surface. The most dramatic variations occur in the
chord direction. The variations for three characteristic loadings are shown in
figure 3. Two of the three loadings (figs. 3(a) and 3(b)) can be attributed to
variations in Mach number. The forward center of pressure loading is developed
from the classic subsonic chordwise pressure distribution of reference 7 and the
spanwise distribution of subsonic pressure developed in reference 8. The central
center of pressure loading is typical of supersonic flow where the load is distributed
uniformly over the lifting surface. The third distribution (fig. 3(c)), which
represents a center of pressure located near the trailing edge of the lifting surface,
typically results from control surface-induced loads, which are defined in refer-
ence 9. These three loadings represent a widely varying set for computational
analysis.

A schematic of the computational procedure is shown in figure 4. The labora-
tory load calibration provides information from which experimentally determined
influence coefficients are obtained and load equations are developed. These
coefficients and equations are the keys to the computation. Each of the hypothetical
loadings can be divided into local area loadings. The manner in which the loading
is subdivided is based on the location of laboratory calibration loads. For the
present study, the wing surface was subdivided to correspond to the calibration
load point locations, as shown in figure 5.

A typical local loading is shown in figure 6. This local loading can be used to
calculate the total strain gage output for the jth strain gage and the ith load point,
By o which can be determined from the equation

ji
"t (1))

where Ll is the local loading at the ith point and Iji is the influence coefficient
i

determined from the load calibration. The influence coefficient is defined as

He.
I..= ___l.
ji L

i

where Heo is the total output of the jth strain gage due to the calibration load,

]
LC , applied at the ith load point.
i



The total outputs for all the strain gages can be calculated for all the local
loadings. Hence, for any discrete strain gage, j, the total output, Ry s due to the

total load, LT’ can be expressed as ]
i=n
Wp = Z (Ll.)(Iji)
o= M T

where n is the total number of local loadings. The number n also corresponds to the
number of load points used in the laboratory load calibration.

The total output Koy is input directly to a load equation that was developed using

the jth strain gage. If m strain gages are available, then for each way the load is
distributed, the outputs to be calculated are Hp s Bp s o o o Bps oo« Bp For

1 2 j m
this study, the load was distributed in the three ways shown in figure 3. Therefore,
there are three identical total loads, LT’ which are distributed in three ways by way

of the local loadings, Ll . From this information, local strain gage outputs, p o
i ji

can be calculated. Then total strain outputs, Ky can be calculated for m strain

gages for each of the three total load distributions. Three known load distributions
can now be applied mathematically to the structure; then these loads can be calcu-
lated based on the experimental influence coefficients and the total superimposed
strain outputs. If the equations are universally applicable, the calculated load
should approximate the applied load, LT. If for one or more of the three load distri-

butions a particular equation fails to calculate L., with suitable accuracy, the equa-

T
tion should be rejected because it is not universally applicable to all load distribu-
tions.

INFLUENCE COEFFICIENT PLOTS

Probably the most informative manner of presentation for load calibration data is
the influence coefficient plot. The influence coefficient plot provides a way to look
at the output per unit applied load as a function of span location for a given chord
location for each strain gage bridge (ref. 6). A plot of this nature is useful in
determining whether a bridge is affected predominately by shear, bending moment,
or torsion loads, by a combination of two, or even by all three. This is illustrated
in figure 7. The ideal responses are those from strain gages that are sensitive only
to shear, bending moment, or torsion loads. Ideal responses are rare. More
commonly, the influence coefficient plot shows the combined effects of shear,
bending moment, and torsion loads. This type of response, which is referred to
herein as a complex response, is frequently nonlinear in nature (ref. 6). The



purpose of combining several strain gages into an equation is to attempt to create
an ideal or nearly ideal response. :

An equation can be plotted similarly and examined on the same basis. This
provides an excellent way to examine the characteristics of the equations in terms
of the load location. Influence coefficient plots for the equations presented in
table 1 are shown in figures 8, 9, and 10. The shear equations are plotted in
figure 8, the bending moment equations in figure 9, and the torsion equations in
figure 10. In the ideal case, these plots would be similar to the shear, bending
moment, and torsion plots in figure 7(a). An ideal shear equation would appear as
a horizontal straight line. An ideal bending moment equation would appear as a
straight line passing through the origin. An influence coefficient plot of an ideal
torsion equation would have the same shape as the planform of the constant chord
lines.

RESULTS AND DISCUSSION

The computational procedure shown in figure 4 was applied to the load-
calibrated wing, the derived equations, and the set of hypothetical loads discussed
in previous sections. A 44,480-newton (10,000-pound) load was applied mathemat-
ically to the wing structure using the three distributions shown in figure 3. These
load distributions are referred to hereafter as the forward center of pressure
loading, the central center of pressure loading, and the aft center of pressure
loading. The procedures outlined in the Computational Procedures section were
used to apply the local loadings and to calculate the total output for each of the
strain gages under each load condition. The outputs for each of the three load
distributions were input to the appropriate equations from table 1 and the resulting
calculated loads for shear, bending moment, and torsion were then compared to
the known applied load. The results are shown in figures 11 to 13.

Shear Loads

In figure 11, the calculated shear loads are compared to the 44,480-newton
(10,000-pound) applied load for the eight shear equations. The figure shows that
the calculated loads are smalier than the mathematically applied load. In addition,
the calculated loads more closely approximate the mathematically applied load for
the forward and central center of pressure loadings than for the aft center of pres-
sure loading. There is a significant variation in calculated load from equation to
equation for all three load distributions. The variation is as high as 20 percent.

Figure 11 also shows that equation 93S comes closer to calculating the three
mathematically applied loads than any of the other equations. However, table 2
shows that equation 93S has the second highest standard error of the eight shear
equations. Equation 958 is almost as good as equation 93S for calculating the
applied load and has a significantly lower standard error. The influence coefficient
plots of equations 93S and 955 (fig. 8) show that the chord lines for equation 958
are more closely packed and more closely resemble straight lines.



Equations 91S and 92S appear to be the least favorable shear equations based
on the calculative test used in this paper. The influence coefficient plot for equa-
tion 91S shows a lot of scatter and some significant nonlinearities. The influence
coefficient plot for equation 92S, however, does not look as bad as the results of the
calculative test imply. Comparison of the standard errors of the equations and
examination of the influence coefficient plots of the equations do not reveal any
obvious clue as to why equations 93S and 95S result in calculated shear loads closer
to the analytically applied shear load than those calculated with equations 91S and
92S. However, since all eight shear equations use logical combinations of strain
gages, little variation would be expected. If these equations were contrasted with
equations having illogical strain gage combinations, trends would probably be more
evident.

The landing gear wheel well is between the spars on which strain gage bridges
306/307 and 308/309 are located. This wheel well represents an interruption in the
continuity of the structure. It is worth noting that equations 91S and 92S have
three strain gages forward of the wheel well and two strain gages aft of the wheel
well, whereas equations 93S and 95S have two strain gages aft of the wheel well and
three forward of the wheel well. Further investigation would be necessary to
determine whether this difference is significant.

Two other factors of importance in a study of this nature are the magnitude of
the calibration loads and how the loads are distributed over the surface of the wing.
Figure 14 shows the relative magnitudes of the calibration loads for this study. The
lengths of the vectors represent the relative magnitudes of the loads. As is true in
the calibration of most aircraft wings, the distribution of the calibration loads does
not correspond to the probable distribution of the flight loads. The largest calibra-
tion loads were applied along an inboard chord from near the leading edge to near
the trailing edge; the outboard leading edge and the entire trailing edge were
subjected to very small calibration loads. In flight, large loads are likely to occur
near the trailing edge where the control surfaces are located and near the leading
edge due to the basic character of chordwise subsonic pressure distributions. The
small calibration loads on the trailing edge probably contribute greatly to the
largest discrepancy seen in figure 11, which is the discrepancy between the calcu-
lated and mathematically applied shear loads for the aft center of pressure loading.

The local loadings that can be applied to a wing structure depend on the bearing
strength available at the particular location; therefore, the calibration loads are
generally sized according to the local strength. This was the case for this wing.
Figures 11 and 14 indicate that the calibration may be inadequate for deriving equa-
tions suitable for describing loadings in an extreme aft position.

Bending Moments

The comparison of calculated and mathematically applied bending moments is
presented in figure 12. The variation in the magnitude of the bending load is caused
by the variation in the distribution of the 44,480-newton (10,000-pound) load. As
in the comparison for shear loads, the calculated bending moments are smaller than
the mathematically applied bending moments. In general, the calculated and



mathematically applied values for the bending moments correlate better than those
for the shear loads. For the forward and aft center of pressure loadings, the calcu-
lated bending moments for all the equations examined are within 4 percent of the
mathematically applied bending moments. The correlation is poorer for the central
center of pressure loading: The calculated bending moments are 5 to 10 percent
lower than the mathematically applied bending moments. The variation of the calcu-
lated bending moments among the equations is quite small for each of the load distri-
butions.

In the influence coefficient plots for the bending moment equations (fig. 9),
no equation appears to be superior to the others. Equation 81B is the least linear
and has the highest standard error of the four equations; therefore, it could be
considered to be the least reliable of the group. However, equations 80B, 82B, and
83B have no distinguishing features that allow further ranking. Equation 80B uses
only two strain gage bridges; hence, it might be chosen because it would require
fewer data recording channels. As in the case of the shear equations, there would
be more contrast if the gage selection included illogical choices.

Torsion Loads

Torsion loads have historically been the most difficult loads to measure on low
aspect ratio and delta-wing lifting surfaces. The wing studied in this paper is no
exception. In addition, caution must be exercised when examining torsion data
because the quantities are dependent on the location of the reference axis. For this
study , the reference axis is at fuselage station 970 (ref. 4), which is at approxi-
mately 25 percent of the mean aerodynamic chord of the wing panel.

The comparison of the calculated and mathematically applied torsion loads is
presented in figure 13. The magnitude of the mathematically applied torsion loads
varies depending on the distribution of the 44,480-newton (10,000-pound) load.
The figure shows that the calculated torsion loads for the forward center of pressure
loading exceed the mathematically applied torsion load by 4520 newton-meters
(40,000 inch-pounds) to 12,430 newton-meters (110,000 inch-pounds). The varia-
tion of the calculated torsion load among the equations is as much as 7910 newton-
meters (70,000 inch-pounds). The calculated torsion loads for the central center
of pressure loading are smaller than the mathematically applied torsion loads by
7910 newton-meters (70,000 inch-pounds) to 16,950 newton-meters (150,000 inch-
pounds). The variation of the calculated torsion load among the equations is as
large as 9040 newton-meters (80,000 inch-pounds). The calculated torsion loads
for the aft center of pressure loading show the largest deviations from the mathe-
matically applied load: The calculated torsion loads are smaller by 56,500 newton-
meters (500,000 inch-pounds) to 84,750 newton-meters (750,000 inch-pounds).
The variation of the calculated torsion loads among the equations was as large as
28,250 newton-meters (250,000 inch-pounds).

The standard errors of the six torsion equations (table 2) range from
2585 newton-meters (22,880 inch-pounds) to 4740 newton-meters (41,920 inch-
pounds). For the forward center of pressure loading, the calculated torsion loads
from equations 90T and 91T have the largest and smallest deviations from the



mathematically applied loads. However, these two equations also have the largest
standard errors of the six equations. The deviations of the calculated torsion loads
from the mathematically applied torsion loads for the central center of pressure
loading are clearly outside the ranges of the standard errors for the torsion equa-
tions. For the aft center of pressure loading, the deviations are at least an order of
magnitude larger than the standard errors for this set of torsion equations. This
discrepancy between the calculated and mathematically applied torsion loads for

the aft center of pressure loading corresponds to the discrepancy for the shear loads
and is assumed to be influenced by the low magnitude of the calibration loads at the
trailing edge (fig. 14). It is also important to note that the deviation of the calcu-
lated torsion load from the mathematically applied torsion load increased as the
center of pressure of the loading became more remote from the reference axis.

Equation 84T has the lowest standard error of the torsion equations. Based on
the mathematical computation, equations 91T, 85T, and 90T best measure the
loadings for the forward, central, and aft centers of pressure, respectively. The
influence coefficient plots indicate that equations 84T, 85T, and 88T are equally
the best of the torsion equations.

Equation Selection Matrices

Thus far, the standard errors of the equations, the mathematical computation
using the three load distributions, and the influence coefficient plots of the equa-
tions have been used individually to evaluate whether an equation can calculate
loads accurately. In table 4, these factors are presented collectively in matrix form
for all the equations. Each equation was evaluated on the basis of five criteria:
the standard error, the accuracy of the calculated loads for the forward loadings,
the accuracy of the calculated loads for the central loadings, the accuracy of the
calculated loads for the aft loadings, and the appearance of the influence coefficient
plot. The equations were ranked on the basis of each of the five criteria and an X
was recorded in the matrix for each equation that ranked in the top 50 percent of
the group for a given criterion. When distinguishing factors were not clear or did
not divide the group of equations into two halves, more or less than 50 percent of
the equations were marked for that criterion. This simple approach provides a
general identification of the most desirable equations based on the five criteria
selected. There are, of course, many other methods and criteria by which a
similar matrix can be established.

The value of such a matrix approach is clear. The discussion of the equations
based on individual criteria gives no definite answer as to which equation to use.
In addition, no equation recurs as the best for all or even most criteria. The matrix
approach combines the accumulated information to give a concise overview. The
matrices in table 4 show that equations 95S, 92S, and 93S are the most desirable
for calculating shear loads; equations 82B and 83B are the most desirable for calcu-
lating bending loads; and equations 85T and 88T are the most desirable for calcu-
lating torsion loads.



CONCLUDING REMARKS

The task of obtaining reliable strain gage load equations is still complex, even
after several decades of experience. Various criteria can be used for evaluating
load equations. Statistical calculations such as standard errors provide no link to
the load to be measured in flight. Influence coefficients are helpful in equation
selection; however, interpretation is very difficult, particularly for the novice.
The mathematical computation introduced in this paper provides a means of
examining the behavior of equations for radically varying distributions of load .
The use of a load-distributing computational procedure to augment the error calcu-
lations and influence coefficient plots developed from the load calibration is of great
value in that it links the load calibration to the flight load to be measured rather
than just to the calibration load. This aspect cannot be overlooked if a system of
equations is to be objectively evaluated for universal application.

A matrix approach to equation selection is presented and an example is given.
The results show that the best equations can be selected from a group by using a
set of criteria from which a matrix can be established. The five criteria selected
for use in the example in this paper are not necessarily recommended as a universal
set of criteria. However, it is strongly recommended that a matrix approach be
used for equation selection. In addition, it is recommended that the matrix criteria
include factors that extend beyond the information of the load calibration and,
hopefully, link the load calibration to the flight load to be measured.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, Calif., March 22, 1977
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TABLE 2.—STANDARD ERRORS OF LOAD EQUATIONS

(a) Shear equations

. Equation standard error,
Equation N (Ib)
87S 1176.9 (264.6)
88S 1557.7 (350.2)
89S 1404.7 (315.8)
918 1744.9 (392.3)
92S 1355.3 (304.7)
93S 1958.9 (440.49)
94S 2610.5 (586.9)
958 1408.2 (316.6)

(b) Bending moment equations

Equation Equation standard error,
q N-m (in-1b)
80B 2661 (23,552)
81B 3693 (32,681)
82B 2555 (22,616)
83B 1439 (12,741)

(c¢) Torque equations

Equation Equation standard error,
a N-m (in-1b)
84T 2585 (22,875)
85T 3305 (29,251)
88T 3132 (27,719)
89T 3629 (32,116)
90T 4347 (38,471)
91T 4737 (41,922)
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TABLE 4.—EQUATION SELECTION MATRICES

[X identifies equations that give most favorable results]

(a) Shear equations

Equation
Criteria
87S | 885 | 89S | 91S | 92S | 93S | 94S | 958
Standard error X -—= X - X -— — X
Forward loading -—- - -— | - X X X X
Central loading - -] | --- X X X X
Aft loading --- X - -—= - X X X
Influence
coefficient plot X X - - X X - X
(b) Bending moment equations
Equation
Criteria
80B | 81R | 82B | 83B
Standard error --- - X X
Forward loading X X X X
Central loading - | --- X X
Aft loading X - X X
Influence
coefficient plot X -—- X X
(c) Torsion equations
Equation
Criteria
84T | 85T | 88T | 89T | 90T | 91T
Standard error X X X - - -
Forward loading - X X - | --- X
Central loading --- X X -— | --- X
Aft loading --- X X = X ==
Influence
coefficient plot X X X -l - { ---
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Figure 1. Structural skeleton of complex delta-wing aircraft.

Strain gage
bridge

« 300/301
* 302/303
« 304/305
o 306/307
« 308/309
« 310/311
o 312/313
3141315
316/317
318/319
* 320/321
® 3221323
3241325

Figure 2. Location of strain gages with
respect to wing planform.



(b) Central center of pressure.

(c) Aft center of pressure.

Figure 3. Distribution of mathematically applied loads.
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Figure 5. Subdivision of wing surface.

fib

Figure 6. Typical local loading.
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Figure 8. Influence coefficient plots of shear equations.
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Figure 8. Continued.
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Figure 9. Influence coefficient plots of bending moment equations.
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Figure 10. Influence coefficient plots of torsion equations.
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Figure 10. Continued.
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